

Trabajo y potencia

Física

RUTA DE APRENDIZAJE

- El aprendizaje esperado para este documento es comprender y analizar el trabajo mecánico y potencia mecánica para luego aplicarlos en la resolución de problemas.
- Este documento está inserto en la unidad de trabajo y energía, como se muestra en el siguiente esquema.

Trabajo

Potencia

Energía mecánica Conservación de energía mecánica

Conservación de momento lineal

TEMAS

- Trabajo mecánico
- · Teorema trabajo-energía
- Potencia mecánica
- Problemas resueltos
- Problemas propuestos

INTRODUCCIÓN

Mover un sofá, levantar una pila de libros y empujar un automóvil, tienen algo en común. En ellos se realiza trabajo ejerciéndose una fuerza sobre un cuerpo mientras este se mueve de un lugar a otro, es decir, sufre un desplazamiento. Se efectúa más trabajo si la fuerza es mayor o si el desplazamiento es mayor.

En este documento se comprenderá el concepto de trabajo mecánico, el teorema trabajo-energía y luego la potencia mecánica.

Trabajo y potencia mecánica

Trabajo mecánico

El trabajo total realizado sobre una partícula por todas las fuerzas que actúan sobre ella es igual al cambio en su energía cinética: una cantidad relacionada con la rapidez de la partícula. Esta relación se cumple aún cuando dichas fuerzas no sean constantes, que es una situación que puede ser difícil o imposible de manejar.

Si se considera un cuerpo que sufre un desplazamiento x en línea recta y se mueve debido a la acción de una fuerza constante F sobre la dirección del desplazamiento, el trabajo realizado por la fuerza constante en dichas condiciones, será:

W = Fx

Donde:

W: trabajo [ʃ] F: fuerza [N]

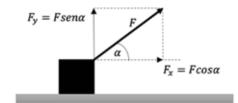
x: desplazamiento [m]

La unidad de medida del trabajo en el sistema internacional (SI) es el joule [J].

1 joule=(1 newton)(1 metro)

o bien

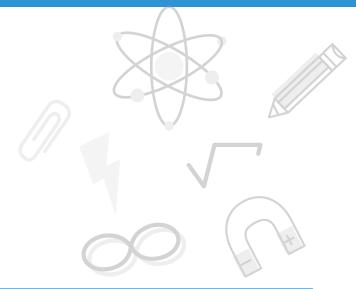
1 J=1 N⋅m

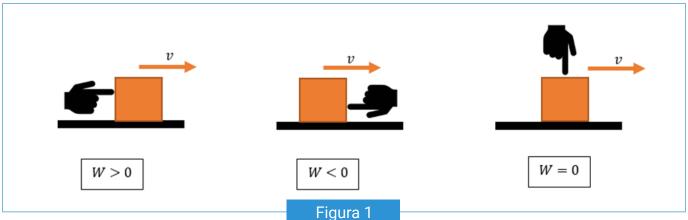

¿Qué ocurriría con el trabajo si la fuerza se aplica con un ángulo α ?

En este caso el trabajo se calcula como:

 $W = Fx\cos\alpha$

Donde α: ángulo


Recordar la descomposición de fuerzas

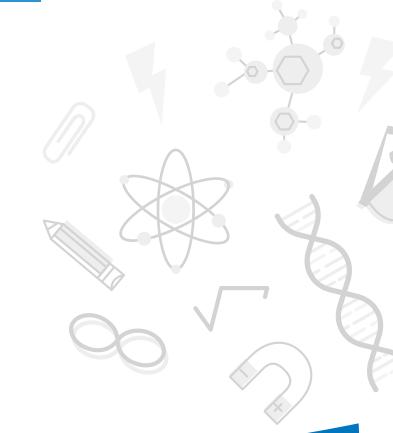


Al descomponer la fuerza en los ejes x e y, se obtienen las expresiones de la imagen. La fuerza perpendicular al movimiento no producirá trabajo, solo lo hará la fuerza paralela al movimiento $(F_x = F \cos \alpha)$

El trabajo es una magnitud escalar, aunque la fuerza y el desplazamiento sean vectores, pues el producto entre dos vectores es un escalar (desde el punto de vista matemático) y desde el punto de vista físico el trabajo solo será positivo o negativo, nunca tendrá una dirección asociada a ella.

El trabajo puede ser positivo, negativo o cero, pues dependerá del ángulo que se forme entre la fuerza F y el desplazamiento x, como se muestra en la figura 1.

Teorema trabajo-energía


Ya se explicó que **el trabajo realizado** sobre un cuerpo dependerá del desplazamiento de este, pero también **está relacionado con los cambios en la rapidez del objeto,** como se puede observar en la figura 1.

Si recordamos las ecuaciones del movimiento rectilíneo uniformemente acelerado, se tiene:

$$v_f^2 = v_0^2 + 2ax$$

Al despejar la aceleración, se obtiene:

$$a = \frac{v_f^2 - v_0^2}{2x}$$

Ahora retomando la ecuación de fuerza (segunda ley de Newton):

$$F = ma$$

Se reemplaza la ecuación de aceleración en la de fuerza y nos queda:

$$F = m(\frac{v_f^2 - v_0^2}{2x})$$

Y ahora en la ecuación de trabajo (W = Fx) se reemplaza la expresión de la fuerza obtenida anteriormente:

$$W = m(\frac{v_f^2 - v_0^2}{2x})x$$

Simplificando el desplazamiento (x), quedaría:

$$W = m(\frac{v_f^2 - v_0^2}{2})$$

$$W = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_0^2$$

Y la definición de energía cinética es:

$$E_c = \frac{1}{2}mv^2$$

Por lo anterior se deduce que

$$W = E_{cf} - E_{ci}$$

$$W = \Delta E_c$$

Siendo esta última expresión, el **teorema trabajo-energía**.

Hasta ahora hemos hablado del trabajo para fuerzas constantes, pero ¿qué ocurre si las fuerzas son variables?

Si la fuerza es variable, la expresión del trabajo es la siguiente:

$$W = \int_{x_1}^{x_2} F_x dx$$

Para profundizar este contenido, te sugiero revisar el texto Física Universitaria volumen 1, capítulo 6 (bibliografía).

Potencia mecánica

Se define la potencia mecánica como la rapidez con que se realiza un trabajo. Al igual que el trabajo y la energía, es una magnitud escalar. La unidad de medida de la potencia mecánica es watt [w]. Su expresión viene dada por:

$$P = \frac{W}{t}$$

Donde:

P: potencia [W] W: trabajo [J] t: tiempo [s]

1 w=1
$$\frac{J}{s}$$

Otra manera de expresar la potencia es la siguiente:

Sabiendo que el trabajo en un movimiento horizontal, con la fuerza aplicada en ese mismo sentido, el cos0°=1, quedaría:

$$W = F \cdot x$$

Y se reemplaza esta ecuación en potencia:

$$P = \frac{F \cdot \chi}{t}$$

Se sabe, a través del estudio de cinemática, que la velocidad (en un movimiento rectilíneo uniforme) es:

$$v = \frac{x}{t}$$

Reemplazando velocidad, la potencia quedaría expresada como:

$$P = F \cdot v$$

Donde
F: fuerza [N]
v: velocidad instantánea [m/s]

Lee y analiza los siguientes problemas

Problemas resueltos (considerar $g=10 \text{ m/s}^2$)

A continuación, se presentan tres problemas resueltos con sus procedimientos, en estos problemas se sugiere hacer lo siguiente:

- Lee comprensivamente.
- · Revisa el paso a paso.
- Destaca lo que te resulte importante.
- Destaca lo que te genere dudas y luego consulta al tutor.

[]

Problema n°1

- 1. Suponiendo que se dispone de una máquina para mover objetos y capaz de aplicar una fuerza constante de 100 N a una caja cargada de libros, calcular:
- a. El trabajo máximo capaz de desarrollar dicha máquina cuando desplaza la caja 5 metros en sentido horizontal.
- b. El ángulo que forma la fuerza aplicada por la máquina con el desplazamiento, al desplazar la caja 5 metros en sentido horizontal sabiendo que el trabajo desarrollado por la máquina fue de 250 J.

Solución letra a

Paso 1: anotar los datos.

$$F = 100 N$$
$$x = 5 m$$

Paso 2: reemplazar los datos en la fórmula de trabajo.

$$W = F \cdot x \cdot \cos\alpha$$

$$W = 100 \cdot 5 \cdot \cos0$$

$$W = 500 J$$

Solución letra b

Paso 1: anotar los datos.

$$W = 250 J$$

$$F = 100 N$$

$$x = 5 m$$

Paso 2: reemplazar los datos en la fórmula y despejar el ángulo.

$$W = F \cdot x \cdot \cos \alpha$$

$$250 = 100 \cdot 5 \cdot \cos \alpha$$

$$\cos \alpha = \frac{250}{500}$$

$$\alpha = \cos^{-1}(\frac{250}{500})$$

Problema n°2

Para arrastrar un cuerpo de 100 kg por un terreno horizontal se emplea una fuerza constante igual a la décima parte de su peso y formando un ángulo de 45° con la horizontal, calcular: a. El trabajo realizado por tal fuerza en un recorrido de 100 m.

b. Si este trabajo se ha realizado en 11 min 49 s, ¿qué potencia se habrá desarrollado?

Solución letra a

Paso 1: anotar los datos.

$$m = 100 kg$$

$$\alpha = 45^{\circ}$$

$$x = 100 m$$

Paso 2: reemplazar los datos en la fórmula de trabajo (recordar la fórmula de peso (P=mg).

$$W = F \cdot x \cdot \cos\alpha$$

$$W = \frac{m \cdot g}{10} \cdot x \cdot \cos\alpha$$

$$W = \frac{100 \cdot 10}{10} \cdot 100 \cdot \cos45$$

$$W = 7071 \text{ J}$$

Solución letra b

Paso 1: anotar los datos (transformar el tiempo a segundos)

$$W = 7 \ 071 J$$

 $t = 11 \min 49 seg = 709 s$

Paso 2: reemplazar los datos en la fórmula de la potencia

$$P = \frac{W}{t}$$

$$P = \frac{7071}{709}$$

$$P = 9.97 W$$

?

Problema n°3 (Young & Freedman, 2009, pp. 205)

Un trineo con masa de 8.00 kg se mueve en línea recta sobre una superficie horizontal sin fricción. En cierto punto, su rapidez es de 4.00 m/s; 2.50 m más adelante, su rapidez es de 6.00 m/s. Use el teorema trabajo-energía para determinar la fuerza que actúa sobre el trineo, suponiendo que tal fuerza es constante y actúa en la dirección del movimiento del trineo.

Solución

Paso 1: identificar los datos.

$$m = 8.00 \text{ kg}$$

$$v_0 = 4.00 \frac{m}{s}$$

$$x = 2.50 \text{ m}$$

$$v_f = 6.00 \frac{m}{s}$$

Paso 2: utilizar el teorema trabajo-energía para calcular el trabajo realizado.

$$W = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_0^2$$

$$W = \frac{1}{2}8 \cdot 6^2 - \frac{1}{2}8 \cdot 4^2$$

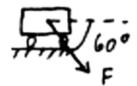
$$W = 80 J$$

Paso 3: utilizar la ecuación de trabajo para calcular la fuerza que actúa sobre el trineo.

$$W = Fx$$

$$F = \frac{W}{x}$$

$$F = \frac{80}{2.5}$$


$$F = 32 N$$

Pon a prueba tus conocimientos

Problemas propuestos

A continuación, se presentan tres problemas propuestos para que puedas resolver y practicar, recuerda hacer lo siguiente:

- Resuélvelos siguiendo los pasos utilizados en los problemas resueltos.
- · Si es necesario apóyate con los apuntes.
- Si surgen dudas, registrarlas para luego consultar con el tutor.
- ¡Buen trabajo!
- 1. Un bloque de 6 kg, inicialmente en reposo, se jala hacia la derecha a lo largo de una superficie horizontal mediante una fuerza horizontal constante de 12 N, ¿cuánto trabajo se realiza para mover el bloque en 3 m? Si el trabajo se realiza en 3 s, ¿cuánta potencia se aplicó?
- 2. Calcular el trabajo que realiza una fuerza F al recorrer una distancia x, si F=10 N, x=10 m y $\alpha=60^{\circ}$ hacia abajo.

3. Un trineo con masa de 6.00 kg se mueve en línea recta sobre una superficie horizontal sin fricción. En cierto punto, su rapidez es de 2.00 m/s; 2.00 m más adelante, su rapidez es de 3.00 m/s. Use el teorema trabajo-energía para determinar la fuerza que actúa sobre el trineo, suponiendo que tal fuerza es constante y actúa en la dirección del movimiento del trineo.

Soluciones

- 1. 36 J; 12 w
- 2. 50 J
- 3. 7.5 N

Síntesis

En este documento hemos trabajado los conceptos de trabajo y potencia mecánica y luego se han aplicado en la resolución de problemas.

El trabajo es la capacidad de producir un movimiento y es una magnitud escalar. Su unidad de medida es joule.

El teorema de trabajo-energía expresa que el trabajo es igual al cambio de energía cinética. La potencia mecánica es la rapidez con que se efectúa un trabajo y es una magnitud escalar. Su unidad de medida es watt.

Las principales ecuaciones trabajadas son:

Trabajo mecánico	$W = Fx cos \alpha$
Teorema trabajo-energía	$W = \Delta E_c$
Potencia mecánica	$P = \frac{W}{t}$

REFERENCIAS BIBLIOGRÁFICAS

Asimov. (2010). Física para el CBC parte 2. Buenos Aires: Asimov. Young, H & Freedman, R. (2009). Física Universitaria. México: Pearson Educación.

¿Quieres recibir orientación para optimizar tu estudio en la universidad?

CONTAMOS CON PROFESIONALES EXPERTOS EN EL APRENDIZAJE QUE TE PUEDEN ORIENTAR

SOLICITA NUESTRO APOYO

Sitio Web de CIMA

Ver más fichas

Solicita más información

